Paddock and catchment modelling

Tessa Chamberlain and Shawn Darr

Department of Environment, Tourism, Science and Innovation

Overview

Paddock models

- Background
- Model updates
- Future plans

Catchment models

table table I

- Background
- Model updates
- Future plans

Cropping in the GBR

GBR catchments = 42M Ha

Grazing = 30M Ha (71%)

Cropping and horticulture	Hectares
Grain cropping	900,000 (2.0%)
Sugarcane	500,000 (1.2%)
Bananas	14,000 (0.03%)
Other horticulture	80,000 (0.2%)

Sugarcane paddock model

Daily time-step

Represents key processes:

- Water balance
- Carbon & nitrogen dynamics
- Crop growth
- Crop N & water use

Predicts DIN losses

Hable Hable Has

Two modelling pathways

(Aldothe Hables

Soil maps

Old: soils defined by CSIRO based on well-studied sites, extrapolated broadly

New: soils defined by best-available soil mapping and data

We now model the range of soils that exist across a region, not just those that have been studied at trial sites

Consistent method everywhere

Benefit: more accurate representation of soils and their locations across the region Soil / climate / mgt interaction

Management maps

Old: basin-wide estimates of how common different management practices are

New: spatial management map based on Projector project data

53% coverage in Mackay-Whitsunday region

Benefit: more accurate representation of management with less model runs!

Soil / climate / mgt interaction

Irrigation scenarios

Old: one irrigation scenario modelled across Mackay-Whitsunday region

New: five scenarios (four irrigation scenarios + no irrigation) modelled

Benefit: more realistic representation of irrigation practices

New scenarios are not mapped out

DIN runoff model

Old: empirical model driven by N fertiliser application rate

New: process-based model driven by soil N concentration, includes organic & inorganic inputs

New model calibrated in Wet Tropics and validated at Mackay

Benefit: more realistic representation of DIN loss processes; accounts for organic N

Science of the Total Environment 803 (2022) 150019

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Ten years of monitoring dissolved inorganic nitrogen in runoff from sugarcane informs development of a modelling algorithm to prioritise organic and inorganic nutrient management

Maria P. Vilas ^{a,*}, Melanie Shaw ^a, Ken Rohde ^b, Brendan Power ^c, Stephen Donaldson ^b, Jenny Foley ^c, Mark Silburn ^c

^a Department of Resources, Queensland Government, Brisbane, Queensland, Australia ^b Department of Resources. Queensland Government, Mackay, Queensland, Australia

Department of Resources, Queensiana Government, Mackay, Queensiana, Australia
Construction of Resources, Queensiand Government, Toowoomba, Queensiand, Australia

HIGHLIGHTS

GRAPHICAL ABSTRACT

 The APSIM model was extended to predict the extraction of soil N into runoff.
The model simulated well DIN in runoff losses from organic and inorganic fertilisers.

 Application rate had more impact on DIN in runoff losses than timing and placement.

Modelling for Projector

Current: infrequent updates, little flexibility with management options. Update coming in late 2025.

Future: model API to provide live model output

Benefits: Projector models stay up-to-date with Report Card builds. Users can define more specific management scenarios.

Future improvements

New version of the model – runs faster! Review of management practices Soil hydraulic conductivity Subsurface loss pathways More yield data for model validation

Questions for you

How can we better deliver modelling and information to suit stakeholders' needs?

Practices of interest?

Yield and other trial data?

Comms - what is useful?

Catchment Modelling

Why model? Why not just use monitoring?

- Monitoring provides:
 - Pollutant concentration
 - Total pollutant load
 - Monitoring is expensive and difficult
- Models help by:
 - Filling in gaps
 - Removing climate signal
 - Estimate load reductions due to improvement management practice
 - Explore scenarios
 - what will happen if we change management practices
 - What is the catchment source of the sediment and nutrients in this plume?

Image: Copernicus Sentinel-2

Paddock to Reef Integrated Modelling, Monitoring and Reporting

How do Catchment models work?

Paddock Models

Hillslope Erosion

Streambank Erosion

Baseline Model

0A

WQ Monitoring

Basin Average Annual Loads

Hatel Alan of the form

17

- Baseline
 - Fine sediment
 - Nutrients

Sandy Creek at Homebush

Average Annual Loads

Baseline Calibration

 Monitored data used for calibrating the model

Change Model

1

- Improved fertiliser application
- Improved grazing practices
- Gully rehabilitation

. . .

Streambank rehabilitation

Basin Average Annual Loads

Baseline – Change = Load Reduction

under it is a

- Change Load
 - Fine sediment
 - Nutrients

Reef Water Quality Report Card

Model Updates

5-yearly model rebuild

Hydrology Calibration

- Increased number of gauges calibrated
 - Old: 167 gauges
 - New: 187 gauges
- New extraction & storage data
- Significantly improved results:
 - PBIAS 4.6% (16.1%)
 - Daily NSE 0.91 (0.73)

Hanne Hand Jaker

Land Use

Updated 2021 land use

Soils Data

Improved:

- Scale and spatial representation
- Erodibility
- Particle size
- Nutrient concentrations

Streambank

New:

- Soils data
- Streambank soil erodibility

Improved:

- Stream geometry based on lidar data
- Estimation of bank full flow
- Estimation of floodplain deposition

O'Connell River

Hillslope

New:

- Soils data
- Groundcover data
- Rock-factor

Gully

Updated:

- Soils •
- Gully density •
- Gully cross-section •

Pristine areas (Lewis et al 2023)

- New nutrients concentration data for near pristine areas
- Applied to:
 - Baseline
 - Predevelopment

Actor Marken

Paddock Models

New models:

- Sugarcane
- Broadacres cropping
- Bananas

Results

• Re-scheduled delivery date is late 2025

Future Projects

- Groundwater interactions
- Estuarine models
- Streambank mapping

Questions?

Just in case slides

GBR Scale – Export Load By Region

Fine Sediment

Dissolved Inorganic Nitrogen

GBR Scale – Export Load by Landuse

Fine Sediment

Dissolved Inorganic Nitrogen

Regional Scale – Export Load By Process

Dissolved Inorganic Nitrogen

■ Diffuse Dissolved ■ Point Source ■ Hillslope no source distinction ■ Seepage

Basin Scale - Anthropogenic Load

Soil groups

	Group	Landscape	Runoff potential	Plant available water capacity
Sandy / Ioamy	Proserpine	Levees	Low	81 mm
	Cameron	Levees	High	97 mm
Non-sodic texture contrast	Kinchant Coarse Sandy Variant	Old alluvial plains	Low	65 mm
	Dunwold	Uplands and sediments from igneous rocks	Low	102 mm
	Marian	Alluvial plains	High	116 mm
Clays	Wagoora	Uplands on volcanics	High	148 mm
	Brightley			
	Victoria Plains	Alluvial plains	Low	171 mm
Sodic texture contrast	Sandiford	Alluvial plains	High	127 mm
	Calen	Alluvial plains	High	116 mm
	Pindi	Uplands on sedimentary rocks	High	80 mm

The state of the s

THAN HANG

MALIA

Management practices

Soil management	Nitrogen management	Irrigation management	Mill mud management
7 classes	8 nitrogen application rates	4 irrigation scenarios with varying allocations and	5 scenarios of varying application rates for
Management of: • Trash	Specific to each soil in each district	application triggers	plant or ratoon
TillageFallowTraffic	Based on nitrogen use efficiencies from 0.6 to 2.0 kg N / tonne cane	1 non-irrigated scenario	1 no-mill mud scenario

Hatel Charles Market

THANK AND HANG

-vin

A MANANA MA