Cover Management for Improved Infiltration

Whole Property Erosion Control

Points to Consider

- Topography
- Land/soil types
- ► Enterprise mix
- Management style intensive, extensive
- Logistics, access, infrastructure
- Timber status, cleared, open, regrowth, shade lines, clearing strategy/restrictions
- Long term business plan

<u>Soils</u> <u>Water response</u>

The ability of the soil to hold water for optimum plant growth PAWC - Plant **Availability** Water Holding Capacity

PAWC for different soils

Ability of different soils to store plant available water (mm water to one metre of depth)

Soil texture	Field capacity	Permanent wilting point	Plant available water content
Well- structured clay	500	300	200
Clay	380	240	140
Loam	340	120	220
Sandy loam	230	90	140
Sand	90	20	70

Ground cover & water run off.

Loss of perennial grass cover disrupts water cycle

100% ground cover.

Approximately 50% cover.

Less than 30% cover.

Cover increases infiltration by reducing crusting

Simulated rainfall (40 mm at 100 mm/hour) on a brown clay -Wallumbilla

Effect of cover and soil moisture on runoff

Overgrazing increases runoff

Overgrazing increases peak runoff rate

Soil Biology

bacteria

algae

fungi

protozoa

mesofauna

What does this mean for Production

Ground Cover

More ground cover less loss of soil and nutrients.

Water use Efficiency of Unfertilised Naturalised Pasture

Rhodes grass and Buffel from approx. 100 sites in QLD (Day et al 1997) ranged from 2 to 10 KG/ha/mm. Average 4kg/ha/mm.

1 In 5 Year storm event, 1 hr long. 50 mm per hour at Emerald. Rolling landscape slopes between 2 and 10 %. Run off from pasture:

Bare soil run off = 50 to 60%. Lost moisture 30mm

90%+ cover Run off = 5 to 10 %. Lost moisture 5mm
Difference 25mm = 100kg/ha. 10kg/hd/day, 10 days feed per hectare.

Over 50ha paddock = 500 days feed for one beast.

Over annual rainfall of around 600mm = loss of around 1,200kg/ha/year

 increase of 1% of carbon in top 30cm soil = an extra 144,000 litres of water/ha

(Comparing the water use efficiency of tropical pasture grasses and legumes used in Queenslands mixed farming systems, Owens, Bell et al.)

Infrastructure.

- Fence lines, Tracks, Fire break, placement.
- On ridge lines, toe slopes, flats and on the contour.

Timber Management.

- Stick rake lines and shade lines
- ▶ On the contour

Basic Principles

- Managing ground cover
 - Grazing management
 - Grazing distribution, fencing and facilities
 - ► Animal behaviour
 - How animals move/graze in a paddock, cattle pads, waterpoints and distribution
- Managing water run off
 - Ground cover/management
 - Placement of infrastructure
 - Structures/physical intervention

Questions

Acknowledgements: Damien O'Sullivan, Ann Mckenzie, Sue Burt, DAF, CSIRO