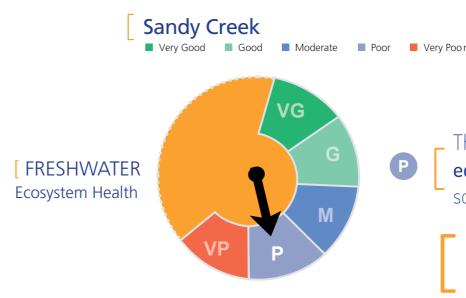


WATER QUALITY IMPROVEMENT PLAN 2014 - 2021

CATCHMENT MANAGEMENT AREA REPORT

22 Candy Crook

23 Sandy Creek

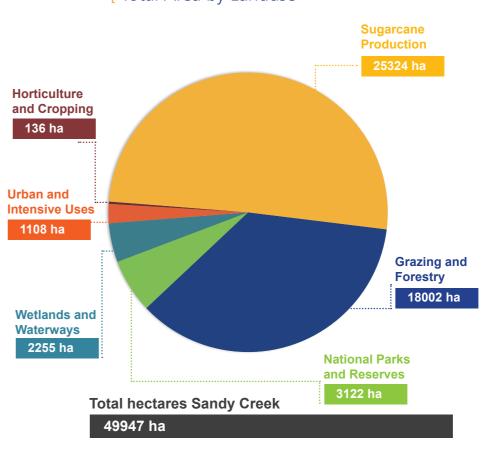

KUTTABUL Sandy Creek: MAP 1 reek SUBCATCHMENT LANDUSE Murray Creek **Constant Creek** ARLEIGH GLENELLA **Pioneer River Main Channel** MACKAY **Mackay City** MIRANI WALKERSTON Sandy Creek BAKERS CREEK **Bakers Creek** MCEWENS **Alligator Creek** Horticulture and Cropping → Weir/dam Sewage treatment plant Grazing and Forestry Drinking wate National Park and Reserves Sugar mill Plane Creek Wetlands and reservoirs Fish monitoring site Rivers and channels WQ monitoring site Top 24 fish barrier — Highway Riparian Vegetation Inadequate riparian vegetation Catchment boundary Riparian vegetation

CATCHMENT MANAGEMENT AREA REPORT

99 Canalia Caralia

23 Sandy Creek

The Sandy Creek **freshwater ecosystem** received an overall score of **Poor**.


Sandy Creek catchment is a coastal drainage system, located on the southern Pioneer River floodplain. Sandy Creek originates south of the township of Mirani, flowing south-east before heading east, entering the sea at Sandringham Bay. The catchment is largely dominated by intensive agriculture with more than 50% of the landuse supporting cane production and 40% grazing activity. Teemburra Dam in the west of the catchment regulates flow and supplies irrigation to downstream areas.

Grazing and cane management practices that reduce phosphorus loads are the highest priority for continued improvement of water quality. As marine risk exposure from pesticide and nutrient loads is rated as high in the near shore environments of this catchment, it is a priority that management practices are implemented to reduce diuron and other nutrients and residual herbicides.

All system repair actions that improve fish habitat and species diversity and abundance are critical to improve the poor ecological health rating for Sandy Creek catchment area. Riparian vegetation restoration and connectivity is also a high priority to stabilise stream bed and banks for improved water quality. Prioritisation and investment in mangrove and saltmarsh rehabilitation is crucial to halt degradation and initiate recovery of these coastal systems and reduce marine risk

exposure.

Total Area by Landuse

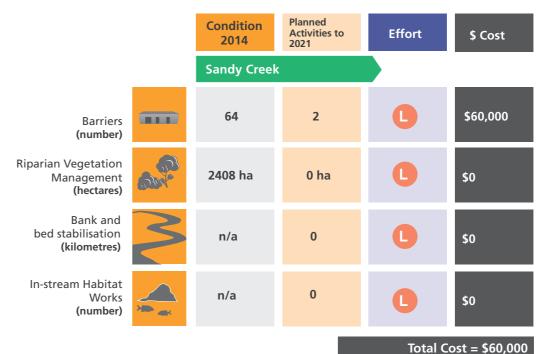
Subcatchment Freshwater Ecosystem Health Indicator Score: Current Condition 2014 and Target 2021

Table 1: OVERVIEW

This index presents the indicators chosen to assess the condition of freshwater ecosystem health. The index uses a combination of monitored data and expert opinion to provide a score for the current condition of fish community health, event water quality, ambient water quality, flow, riparian vegetation, and barriers to migration for each of the region's 33 catchment management areas. The table also presents the target for each indicator to be reached by 2021.

Table 2 Event Freshwater Quality: Current Condition, Targets and Objectives

Key Pollutant Current Condition		Target 2021 Objective 2050		Action	Pollutant Source					
SANDY CREEK SUBCATCHMENT										
Dissolved Inorganic Nitrogen μg/L	401	353	300	MEDIUM	CIU					
Particulate Nitrogen μg/L	363	265	265	V HIGH	CIUG					
Filterable Reactive Phosphorus µg/L	156	137	30	V HIGH	CIU					
Particulate Phosphorus µg/L	138	101	70	V HIGH	CIUG					
Total Suspended Sediment mg/L	61	45	45	V HIGH	CIUG					
Ametryn μg/L	0.02	0.02	0.02	LOW	CIU					
Atrazine μg/L	0.41	0.40	0.40	LOW	CIU					
Diuron μg/L	0.86	0.75	0.30	LOW	CIU					
Hexazinone µg/L	0.42	0.38	0.20	MEDIUM	CIU					
Tebuthiuron μg/L	<lod< td=""><td><lod< td=""><td><lod< td=""><td>LOW</td><td>G</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>LOW</td><td>G</td></lod<></td></lod<>	<lod< td=""><td>LOW</td><td>G</td></lod<>	LOW	G					


Table 2: OVERVIEW

This table presents the current condition (2014) event freshwater quality values for nutrients, sediment, and herbicides. It also presents water quality targets for 2021 and 2050 water quality objectives that have been calculated based on an achievable level of adoption of improved management practices and the level of effort that will be required ("Action"). For each of the pollutants listed, the table also identifies the main pollutant source.

C Cane IU Intensive Uses G Grazing

Table 3 Action Targets: Ecosystem Health Management

L = Low, M = Moderate, H = High

Table 3: OVERVIEW

This table presents the onground management actions determined to be required to improve ecosystem health, including the removal of barriers to fish migration, establishment of riparian vegetation, bank stabilisation, and in-stream habitat works. The table displays the current condition for each component, as well as the planned activities to be completed by 2021, the level of effort required and associated costs.

Tables 4 and 5: OVERVIEW

The tables below display the current level of management practices for Sugarcane/Horticulture, Grazing, and Urban within D, C, B and A Management Framework classifications at 2014. The table also presents the level of voluntary adoption of management practices required to meet 2021 objectives and their associated costs.

Table 4 Agriculture ABCD Adoption Targets

Land Use		2014 Adoption %					Total Cost				
		D	С	В	Α	D	С	В	Α	\$ '000s	
SANDY CREEK SUBCATCHMENT											
Cane & Horticulture	Soil	9%	12%	46%	33%	5%	10%	45%	40%	394	
	Nutrient	12%	25%	36%	27%	5%	15%	50%	30%	1643	
	Herbicide	12%	14%	43%	31%	10%	10%	45%	35%	582	
Grazing	Soil	25%	31%	39%	5%	10%	15%	70%	5%	1207	

Table 5 Urban Practice ABCD Adoption Targets

Land Use		2014 Adoption %				2021 Adoption %				Total Cost
		D	С	В	Α	D	С	В	Α	\$ '000s
SANDY CREEK SUBCATCHMENT										
Diffuse Source Water Quality - DEVELOPMENT PLANNING AND CONSTRUCTION PHASE		20%	80%	0%	0%	0%	50%	40%	10%	789
Diffuse Source Water Quality - POST-CONSTRUCTION/ OPERATIONAL PHASE		15%	85%	0%	0%	0%	50%	40%	10%	789