

Regenerative Agriculture & Soil Health

Terry McCosker

Resource Consulting Services 1800 356 004 www.rcsaustralia.com.au

SOIL HEALTH is a function of:

Physical Attributes

Chemical Balance

Biological Activity & Balance

Indicators of poor physical structure

Low infiltration rate
Waterlogging

*Hardpans

Cloddy, hard soil

*Poor root systems

Chemistry

Indicators of poor <u>chemical</u> composition

Weed problems Poor root systems Low brix level in plants ***Unhealthy plants** Poor animal & Human health

Biology

Biology we CAN see

The C:N Ratio

Form	рН	Foodsource	C:N
Decomposer Mutualists Pathogens	Alkali	Proteins, Nitrogen Low MW carbon	5:1
Mycorrhizal Saprophytic Pathogen/Predator	Acidic	Carbon	10-20:1
Grazers		Bacteria	50:1
Grazers Predators		Bacteria, Fungi, Protozoa, Nematodes Roots	100:1
	Form Decomposer Mutualists Pathogens Mycorrhizal Saprophytic Pathogen/Predator Grazers Predators	FormpHDecomposerAlkaliMutualists-Pathogens-MycorrhizalAcidiceSaprophytic-Pathogen/Predator-Grazers-Predators-	FormpHFoodsourceDecomposerAlkaliProteins, NitrogenMutualistsLow MW carbonPathogensMycorrhizalAcidicCarbonSaprophyticPathogen/PredatorGrazersIsaBacteriaPredatorsIsaBacteria, Fungi, Protozoa, NematodesKoots

Carbon v Nitrogen

Additional Nitrogen Requirements at Varying Wheat Yield Targets and Organic Carbon Percentages

Indicators of poor <u>biological</u> balance

Slow OM breakdown Poor root systems Low brix level in plants Insect & disease issues Low nutrient density

6 PRINCIPLES of REGENERATIVE FARMING

1. PLAN, MONITOR & MANAGE SOIL HEALTH

2. MAXIMIZE LIVING PLANT PRODUCTION

3. A FOCUS on BIOLOGY will REPAIR SOIL HEALTH

4. INTRODUCE BIODIVERSITY

5. MAXIMUM THICKNESS and AVAILABILITY of GROUND

COVER

6. LIVESTOCK are NATURE's RECYCLERS

Modern paradigm

Our ability to change the earth increases at a faster rate than our ability to foresee the consequence of change.

The Conventional approach and Result

The essential Components of a regenerative Ecosystem are: **1. Biodiversity** 2. Healthy Soil **3. Healthy Plants 4. Healthy Animals 5. Healthy Food Production** 6. Healthy People

Gross Margin = (f) Plant Productivity Plant productivity = (f) plant available water and nutrients Plant available water and nutrients = (f) CeC CeC = (f) Soil organic carbon (incl Humus) Soil organic carbon = (f) biological activity Biological activity = (f) food, shelter, water & air

The Linkages

Food, shelter, water & air = (f) PLANT PRODUCTIVITY Plant productivity = (f) plant available water and nutrients

WAYS to INCREASE SOIL HEALTH

COMBINATIONS <u>Management</u>

- Grazing
- Cover/Green manure Crops
- Crop rotations
- Continuous cropping
- Aeration
- Landscape Hydration
- + Biology
- Compost & Compost Extract (BEAM)

Empowering People

+ Fertilizer & Catalysts

+ Perennial Legumes

Compost Extract & Worm Juice on Wheat & Barley - WA

The Underpants underground test

Catalytic fertilizer

- Boron (Solubor)
- Sulphur (Gypsum)
- Calcium (Calsap or micro fine lime)
- Silica (BD501)

As foliar applications

Multi Species cover crops

RCS

Hydration

Gully Repair

Leaky Weir

Principle 2. MAXIMIZE LIVING PLANT PRODUCTION

RCS

http://www.soil-carbon-regeneration.co.uk/glomalin/attachment/amf-symbiosis/

Gabe Brown stock grazing a cover crop

Cover Crops and Yield

0.8% SOC – Legume Cover Crop YIELD = 1t/ha DM

Johnson, D, Ellington, D and Eaton, W (2013) Institute for Sustainable Ag Research.

Cover Crops and Yield

9.5% SOC – Legume Cover Crop YIELD = 7.5t/ha DM

Johnson, D, Ellington, D and Eaton, W (2013) Institute for Sustainable Ag Research.

Iowa corn belt

Principle 3. A FOCUS on BIOLOGY will repair soil health

RCS

Biology is the ENGINE

Gross Margin = (f) Plant Productivity Plant productivity = (f) plant available water and nutrients

Plant available water and nutrients = (f) CeC CeC = (f) Soil organic carbon Soil organic carbon = (f) biological activity Biological activity = (f) food, shelter, H₂O & air

The Essentials of life

✓ AIR – especially oxygen and nitrogen

✓ WATER

✓ FOOD – esp ENERGY

Avoid the excessive usage of fertilizers and pesticides. It destroys the beneficial soil organisms.

✓ SHELTER – eg litter, living species

Aeration (Yeomans 20cm)

Saffron Thistle

RCS

Relative water holding capacity (litres per 50 kg of soil)

BEAM BIOLOGICALLY ENHANCED AGRICULTURAL MANAGEMENT

Dr David Johnson, New Mexico

Johnson-Su No-Turn Composting Bioreactor

David C. Johnson- NMSU Institute for Sustainable Agricultural Research (ISAR) davidcjohnson@nmsu.edu

New Mexico State Universit

Most Productive Ecosystems

How Does a Biologically Enhanced Agricultural Management (BEAM) System Perform?

Control (No Previous Covercrop Application) Total Dry Biomass Production = 1 ton/Acre

1 Year's Previous Covercrop Application Total Dry Biomass Production = 5 tons/Acre

David C. Johnson- NMSU Institute for Sustainable Agricultural Research (ISAR) davidcjohnson@nmsu.edu

Sunflower yield as soils improve

David C. Johnson- NMSU Institute for Sustainable Agricultural Research (ISAR) davidcjohnson@nmsu.edu

2016 Desert Sandy Soil Trial

RCS

580 kg N/ha

David C. Johnson- NMSU Institute for Sustainable Agricultural Research (ISAR) davidcjohnson@nmsu.edu

Changes in Soil Macro and Micro-Nutrients with "BEAM"

Months	0	6	8	15	19	Percent Increase	R ²	Regression
Manganese (mg/kg)	3.25	1.86	1.65	14.31	40.14	1135%	$R^2 = 0.969$	2nd Order
Iron (mg/kg)	4.89	4.12	2.66	27.01	59.19	1110%	$R^2 = 0.9892$	2nd Order
NO ₃ -N (mg/kg)	1.5	1.55	2.00	2.35	3.1	107%	$R^2 = 0.9847$	Linear
SOM (%)	0.75	1.25	1.22	1.49	1.41	88%	$R^2 = 0.7854$	Linear
Magnesium (mg/kg)	1.09	0.075	0.81	1.67	1.99	83%	$R^2 = 0.7954$	2nd Order
Calcium (meq/L)	4.09	2.82	3.00	6.07	7.19	76%	$R^2 = 0.6367$	Linear
Kjeldahl N (mg/kg)	633	719	739.00	752	1041	64%	$R^2 = 0.8244$	2nd Order
Phosphorus (mg/kg)	6.9	12.2	10.00	15.3	11.3	64%	$R^2 = 0.4624$	Linear
Zinc (mg/kg)	0.5	0.63	0.48	0.93	0.81	62%	$R^2 = 0.6652$	Linear
Copper (mg/kg)	1.17	1.1	1.04	1.74	1.64	40%	$R^2 = 0.6591$	Linear
Potassium (mg/kg)	30	33	32.00	42	41	37%	$R^2 = 0.8712$	Linear

20 month Study, 5 Sampling Periods

David C. Johnson- NMSU Institute for Sustainable Agricultural Research (ISAR) davidcjohnson@nmsu.edu

CROP YIELD INCREASES by 12% for each 0.5% change on soil carbon

Gabe Brown's Soil Carbon Data

Principle 4. Introduce Biodiversity

Different root structures

Photos by Gabe Brown

Relationships between organisms drives the progress of all. However fungi are the extroverts that get it going.

Ally Cropping

Companion Cropping

Ley Cropping

Fallow EfficiencyBare Fallow21%

Disc Tillage 25%

Blade Tillage 26%

Min/No Till

32%

"Improving fallow efficiency" 23 Feb 2016

Principle 5. MAXIMUM THICKNESS & AVAILABILITY OF GROUND COVER

RCS

Improving groundcover

The effect of varying ground cover on water and soil loss in a 650 mm rainfall environment

20% ground cover	40% ground cover	70% ground cover			
Runoff water loss = 160 mm/yr Soil loss = 85t/ha/yr	Runoff water loss = 90 mm/yr Soil loss = 40 t/ha/yr	Runoff water loss = 10 mm/yr Soil loss = 3 t/ha/yr			
Poor plant p poor anima	Good plant production				
	Source: LeyGrain (2006)				

Decaying & Living stubble

Principle 6. LIVESTOCK are NATURE'S RECYCLERS

Livestock functions

- Diversity of income
- Spread soil biology
- Feed soil biology
- Recycle waste products eg crop residue
- Animal waste is fertilizer & seeding
- Animal impact used to put crop residue on the ground

