PI6)																						
T2	I			Table 2	T2	Ţ	Table 1:	Tables b	1.8m rov	TRIAL	• As: nit	• As: for	TRIAL There a	by the p	"We beli mud and	applicati and can funded I	In 1988 I renowne soil impi	The fam property try thing	Annette the Sept Bramag control o before jo	BACKC	Trial 1	Action	Ca
O	23	z	Nutrie	: Nutrier	Contr	Mud a	Treatm	elow deta	vs wide.	1 DESIG	sess the p rogen inp	sess the p sugarcar	1 OBJEC re two m	lant.	eve that : d fertilise	or. The fa e trash. 1 :hrough t	he Wern ed for the over. In t	ily embra , time an ,s. Those	and Deni imus are nola cros: of woody pining Cat	ROUND	: Asse seas	on the G	se
O	25	P	nts appli ation (kg	nts appl	ol – 6 Eas	pplied su	ents and	ail the ap	icoi poi ai	SC Promoral	ootential outs.	potential ne,	TIVES		sub-surf: r under t	mily help They have he Reef f	er's were eir work v he past t	aces new d machir who try t	nis Wern a, west o sbred cat weeds. T ttle Creel) TRIAL	essme onal n	bround -	Stu
0	20	~	ed from / ha]	ied	sy steps	Jb surfac	d descri	plication	נפט ניאט ו		for mill r	of incorp	ctives o		ace appli he surfa	ped desig e used th Rescue p	among with com he Wern	' ideas ar nery for t things an	er and th f Mackay ttle. As p: The property and the	-	nt of s utrier	. Carbor	dy
O	00	S	mud		Nutrient	e @33t /	ptions	ŝ	וסנו ופוור נ	hitriant t	nud to su	oorating t	f this tri		cation of ce of the	în a comp Ieir learni rogram.	the earlie post and er's have	nd techno rials. "Th e the one	neir son J / in centr art of the arty is in I erty is in I		sub-su nt prog	ı Farmin	ភ
157	<u>1</u>	z	Nutrie applic		rates	ha plus			ובמנוזבו	restmen	upply org	banded m	al, they a		all nutrie soil it wa	oost appl ings from	est adopti mill muc been inv	logy and ere are tv s who ca	lohn are l al Queen ir integra the Cattle River.		urface gram i	g Future)enni
22	0	P	ents appl ation (kg			top up nu				te with A	anic nitro	nill mud a	ire:		ents is viti s less ava	icator than h this proj	ers of gre 1, using th olved in p	is involve vo types n move f	third and sland. Th ted pest Creek s		applie n suga	S	s We
127	76	~	ied from g / ha)			utrients			i epiicario	ranlicatio	igen and	applicatio			al," said J ailable foi	it measu ject to bu	en cane nese ['] was projects l	ed with a of farme orward. `	fourth g e 330ha managei ub-catch		ed mil ar can		rner
45	16.5	S	top – up						JIIS. IVALIC	Pane Rano	other ma	ins at low			lohn, exp r runoff a	red and b vild their	harvestir ste' produ ooking a	number rs," says You need	eneratior property ment the iment an		l mud e.		, Sep
150	158	z	o Total							Inmicod H	acronutri	rates as			laining th and in the	own sub-	ng in the Jcts as a I t creating	of resea Dennis, "I I to chang	n farmers is home y also ha d Seven		as a c		timu
22	25	P	nutrient						ופמנוופוו	naarhean	ents whil	part of s			nat by pla e root zor	ne compo -surface	region, m natural so the perf	rch progr those wh ge yourse	s, who gro to breedi ve a sma Mile Cree		ompoi		S
127	Ō	~	s applied						r ori ipo a	F chrine a	le reducir	easonal r			icing proc ne, makin	ost mix, p mill mud	noving Th purce of I fect comp	ams, ofte o watch elf before	ow 112-he III herd of k runs th		nent o		
45	24.5	S	d (kg /ha								ng granu	nutrient p			ducts like ıg it availi	lacing it applicat	ıe Werne fertiliser post and	en provic and wait change	ectares ol man, Ron ⁻ 12 came nrough th		Ť		
		rease Nitrous Uxide emissions and enhance the or of weeds.	rces has the potential to reduce water quality,	lure to reduce nitrogen applications when	the site will continue to see if this trend	face. Monitoring of soil organic carbon levels	This would indicate that there may be a	are appears to be a trend of increasing soil	olications (T2)	pact on cane and sugar yields when	2014 result is further validation that lucing nitrogen applications in association h alternative nutrient sources (T1) has no	line for T1 (mvd plvs nutrient top-up) is s than that of T2 (control).	niricantiy nigner than the region average. iilst both treatments have shown yield	he and sugar yields for both treatments are	ICOMES TO DATE Jlts for the trial so far are as follows:		 Top left - Dennis Werner (left) with son John Gig porating mill mud applications as part of the seaso Trial 2). 						
I	4	0.3	0.3	%	6 0	0.5	0.6	0.7		+ 1 1	94	Tonn ೫ ೫	es cane per	hectare	106	110	ght) and Jo nal nutrier						
0.54	T1 0.54	2012			0	5		л Ö	Werner site 1 - Averaç	2013 106 108	60C					Werner site 1 - Comp	hn Hughes from DAFF. Tł t program for sugarcane.						
0.55	0.60	2013							ge %OC (2012, 2013 and 2014)	2014 102 98			/		/	arison of cane yields (2013, 2014)	he Werners are assessing the . Top right - Lime vs un-limed						
0.54	0.67	2014															potential of trash						

Case Study 5 (continued)

Trial 2: Effects of fallow tillage operations on organic carbon levels following an extended ratoon cycle

TRIAL 2 OBJECTIVES

The three main objectives of this trial are:

- Determine the potential for increasing/maintaining OC levels through green harvesting of sugarcane
- fallow phase of the production cycle Measure the effects of different tillage regimes on organic carbon levels and soil biology populations during the
- Determine the effects of soil pH on soil biology populations and crop yields over time

TRIAL DESIGN

ratoon cycle. The site: 10-year green harvested ratoon cycle where cane had been ploughed out following a 10-year green harvested

the tables 1 & 2 The trial design incorporated four tillage treatments with 4 replications as well as limed and un-limed treatments as per

Table 1: Four treatments with increasing levels of intensity to determine effects on soil organic carbon levels

•	Fallow	Spray-out	Discing	Ripping	Hoeing
•	Treatment	(glyphosate)	C	c	
L1		2	I	1	I
T2		1	2	1	I
T3		-	2	2	-
T4		1	4	2	2

Table 2: Significant responses to lime application in the ameliorated section of Plot 11 (139 days post application)

Sample date	Plot	pH (1:5 Water)	Calcium (Amm-acet.) Meq/100g	Cation Exchange Capacity (Meq/100g)	
2/7/13	11 - Un-limed	4.7	0.46	1	.69
	11 - Limed	5.9	2.00		2.35

TRIAL OUTCOMES TO DATE

Organic Carbon

P18 Geo-referenced OC sampling of all plots was conducted 11 days after sugarcane regrowth was sprayed out with attributed to: cycle (Figure 1). The small incremental increase in average OC levels over the three sampling periods (0.1%) is glyphosate (3/1/13) for establishing the base-line OC levels following the 10-year green harvested ratoon cycle. headland sites showed a small increase in carbon levels (0.02%) following the extended green harvested ratoon (19/2/14). Calibrating the average OC levels from all plots against the average OC measurements from the three Follow up 0C sampling was conducted in a fully tilled situation, post tillage treatments (2/7/13) and in plant cane

- 0 incorporation of the green trash blanket and commencement of tillage treatments Excessive scraping away of surface located organic matter in the first sampling regime prior to the
- 0 The concentration of OC into the cane row with the plant cane hilling-up process

G

treatment and the three other less aggressive tillage treatments. (Figure 1). (0.01%). The sampling regime in the plant cane phase showed a 0.05% reduction in OC levels between the most severe tillage Only small differences in OC levels were discernible between the different levels of tillage intensity over the fallow period

Figure 1: %0C levels overtime for different treatments

Cane and Sugar Yield

- ameliorated sections of the plots N/haJ plus the additional N from improved mineralisation would have increased the propensity for crop lodging in the calcium and pH levels and an associated reduction in aluminium saturation will have positively enhanced the soil from the ameliorated sections of the plots is largely attributed to increased crop lodging (Figure 30). It is likely that increased mineralisation process as well as the overall root biomass in limed areas. The relatively high N rates applied at planting (170kg 7.6% less tons of cane/hectare (TCH) than the average un-ameliorated zones (110 and 119 TCH respectively). The reduced yield treatment (Treatment 4) plots in the limed and un-limed zones of the respective plots. The limed sections of the plots yielded Hand harvested yield data was collected from the spray-out (Treatment 1) replicated plots and the most aggressively tilled
- mineralisation and/or increased root biomass better able to extract nutrients and utilise moisture (Figure 4) 8) confirmed higher levels of N in both millable stalks (MS) and leaf cabbage (LC) in the limed zones indicating improved Mulched plant samples collected at harvest from limed and un-limed sections of selected spray-out treatments (Plots 1, 5 and
- treatments in limed section this also attributed to reduced lodging and lower soil N levels (Figure 3) treatments yielded higher than the limed spray-out treatments (121 versus 105 TCH respectively). Again this is attributed to is attributed to soil a reduction in soil N through the N loss pathways and reduced lodging. The un-ameliorated spray-out is likely to have further stimulated the mineralisation process. The fallow tillage treatments were initiated during the wet levels of 2 and 3.2 respectively). The heavily tilled treatment in the un-ameliorated plots yielded slightly more than the tilled lodging issues with the sprayed out plots remaining relatively erect in contrast to the limed spray-out plots laverage lodging The higher average yields achieved in the heavily tilled treatments compared to the spray-out in the limed section of the trial season period and a significant amount of mineralised N would have been lost via the leaching and denitrification processes. Aside from the effects of amelioration on improved mineralisation, the tillage treatments conducted during the fallow period
- application rates at planting and increased mineralised N in the ameliorated areas marginally higher CCS levels than the limed sections of the plots (Table 3). This is also attributed to the relative high N CCS sampling results showed that cane lodging influenced both yield and CCS with the un-limed more erect cane having

Case Study 5 (continued)

3/07/2013). Cane lodging is also likely to have influenced final stalk numbers at harvest. A fairly strong correlation between stalk numbers and yield was evident. Average stalk numbers to the increased weed populations and reduced soil moisture levels at planting (as indicated through field observations on determine the reasons for difference in stalk numbers but may be related to poorer plant cane strike in the limed sections due were higher in the un-limed section compared to the ameliorated zones (6.9/m² and 6.2/m² respectively). It is difficult to

Figure 2: Cane yield (2014) versus cane lodge rating (lime and un-limed)

Table 3: Comparison of cane yields, CCS and lodge ratings across tillage treatments for limed and un-limed zones

Figure 3: Variations in yield across tillage treatments and amelioration treatments

Figure 4: Total N concentrations in the plant stalk at harvest (limed and un-limed)

G

Plant

75

65

80

Heavy till Sprayout

S 55 60

14 Jan 13

25 Feb 14

Figure 5: Comparison of plant parasitic nematode populations

Soil Biology

- (1, 5, 8 and 14) and the heavily tilled plots to establish baseline levels. The early January 2013 sampling was conducted prior to Samples were collected for biological analysis at the start of the fallow phase from geo-referenced sites in the spray-out plots limed and un-limed spray-out and heavy till plots. any tillage disturbance. Sampling was repeated in the plant cane phase in mid February 2014. Sampling was conducted in the
- 72% in spray-out plots in the subsequent plant cane crop (Figure 5). respectively). Average levels of parasitic nematodes reduced from 84% (baseline levels at the beginning of the fallow phase) to a reduction in the break- down of parasitic nematodes in the spray-out plots compared to the heavy till (72% to 77% No outstanding biological differences were evident in analysis between the limed and un-limed sections, however, there was
- 0 timeframe may be required before significant changes in biological diversity occur and detected in sample analysis. Tony Pattison (Principal Nematologist DAFF) advised that in terms of pH change from lime applications a longer
- in the spray-out plots and 9% in the heavy till treatment Parasitic nematode domination reduced by 12% from baseline levels at the start of the fallow to mid plant cane phase
- saturation (57% to 4.3%) response to lime (Table 9) with a 1.2 unit increase in pH, a 4 fold increase in calcium levels and a large reduction aluminum Soil test results from the limed and un-limed sections of Plot 11 (139 days post application of lime) showed a significant

Limed versus Un-limed area. Upposite: Irial site comparison of

Program, through funding from the **Catchments Sustainable Agriculture** the Ground Carbon Farming Futures Australian Government's Action on This trial is supported by Reef

