Carmila Creek Management Area

Land Use	Management Practices	Key Pollutant	% 	2007 Adoption	n 		% Ac	014 doption get	on I		٩		14 option eved		Effort realised	% of target	Draft 2021 % Adoption Target	Cost \$ '000s
Cane & Horticulture	Soil		D	С		D				ΑI	D		В	Α	Н	141	New management prac	tice
	Nutrient	<u></u> •	D	С		D (Г	Α		D			Α	Н	68	adoption targets and	.,,
- Tortion	Pesticide	•	D	С		D (Α	C				٦	Н	55	implementation costs w determined in consultat	
Grazing	Soil		D	С		D		В		А	D	C			М	69	the community and stake	keholders
Existing Urban Management	Nutrient					NOT APPLICABLE									during the Water Quality			
New Urban Development	Soil			NOT APPLICABLE									Improvement Plan update continuing throughout 2					
							Date	ed pra	actic	e	C	omm	on pra	ctic	e B Best	practice	e Cutting-edge p	ractice

			ent Fresh	water Qu	ıality Valu		Dra	ft Cane Prio	ority	Draft Grazing Priority				
	Key Pollutant	Objective 2050	Condition 2007	Target 2014	Achieved 2014	Draft Target 2021	Soil	Nutrient	Pesticide	Soil	Riparian	Nutrient	Pesticide	Cost \$ '000s
	DissolvedInorganic Nitrogen μg/L	300	631	465	518	465	L → H	L → H	L → H			L H		150
	Filterable Reactive Phosphorus μg/L	CC	37	27	30	27	L	L → H				L → H		
	Particulate Nitrogen μg/L	CC	256	CC	243	CC	L → H	L ∕† ∕H		L H	L H	L → H		
	Particulate Phosphorus μg/L	CC	53	CC	50	CC	L → H	L ♥H		L → H	L → H	L H		80
	Total Suspended Sediment mg/L	CC	39	CC	37	CC	L → H			L → H	L → H			
	<page-header> Ametryn μg/L</page-header>	CC	<lod< td=""><td>CC</td><td>CC</td><td>CC</td><td>L H</td><td></td><td>L H</td><td></td><td></td><td></td><td></td><td></td></lod<>	CC	CC	CC	L H		L H					
	Atrazine μg/L	0.04	0.06	0.04	0.05	0.04	L → H		L → H					105
	<page-header> Diuron μg/L</page-header>	0.46	0.61	0.46	0.53	0.46	L ∕ H		L → H					
	Hexazinone μg/L	0.23	0.31	0.23	0.27	0.23	L → H		L → H					
	Tebuthiuron μg/L	CC	<lod< td=""><td>CC</td><td>CC</td><td>CC</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Н</td><td>#</td></lod<>	CC	CC	CC							Н	#

 $CC = Current condition; LOD = Limit of Detection which is currently 0.01 <math>\mu$ g/L for all herbicides

[#] Tebuthiuron is not a priority due to consistently low levels of detection across the region

System rating (A=excellent, E=poor)				Draft	Cost			
Value rated	Objective 2050	Condition 2007	Target 2014	Achieved 2014	Draft Target 2021	System repair actions	Priority	\$ '000s
Flow	A	C	B	C	B	Implementation of voluntary irrigation restrictions to maintain waterhole during low flow	L ∕ ¶∕H	Costs to in improvements
Barriers to Migration	A	B	A	В	A	Removal of barriers to migration a priority	L → H	ts to impler ments will I
Instream Habitat	A	D	C	D	C	Restoration and stabilisation of priority reaches	L → H	nent system re be determined targets h
Riparian Vegetation	A	В	A	В	A	Active restoration and connectivity of priority reaches. Grazing management on riparian land	L √ H	pair a after ave b
Estuary Modification	A	В	A	В	A	Active restoration and management to encourage recovery, natural habitat and channel stabilisation	L √ H	for eco: gement t.
Mangroves & Saltmarsh	G	(3)	D	B	D	Active restoration and management to encourage recovery is a priority	L ∕∕∕ H	system health practice adoption
4								